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Abslract A general description is developed for a class of irreversible refrigerators operating 
between WO heat reservoirs. This description is applied to refrigerators having thermal 
resistances between the working fluid of refrigerators and the heat reservoirs. heat leaks between 
the hear reservoirs, and internal dissipations of the working fluid in order to obtain the maximum 
performance coemcient and the performance coefficient versus cooling rate characteristics of 
such refrigerators. This description is also applied to optimizing the key performance parameters 
of such refrigerators. Some new performance bounds of of refrigerators are determined. 

1. Introduction 

Although there are many differences among conventional types of refrigerators, it is 
possible to place upper bounds on their performance via relatively simple thermodynamic 
models. One upper bound of practical interest is the maximum performance coefficient 
of refrigerators. According to classical thermodynamics, a reversible Carnot refrigeration 
cycle is the optimal configuration of conventional refrigerators operating between the heat 
reservoirs at temperatures Th and TE, and its performance coefficient is given by 

However, the performance coefficient gS is of very limited practical value since it 
corresponds to reversible operation, i.e. infinitely slow operation and thus zero cooling 
rate. No practical engineer wants to design or build a refrigerator that tuns infinitely slowly 
without producing the cooling rate. Therefore, it is necessary and significant to determine 
a new upper bound for the performance coefficient of refiigerators by using finite-time 
thermodynamics. 

It is well known that the endoreversible cycle models [1-17] have played an important 
role in the development of finite time thermodynamics. But, using the endoreversible 
refrigeration cycle models of considering only finite-rate heat transfer between the working 
fluid of refrigerators and the heat reservoirs, one cannot obtain a new upper bound for the 
performance coefficient of refrigerators, so that it is necessary to establish a new irreversible 
refrigeration cycle model. On the other hand, like finite-time thermodynamic analysis of heat 
engines [18-241, it is also necessary for the investigation of refrigerators to develop several 
irreversible cycle models including various loss mechanisms, such as mechanical friction, 
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heat leak, thermal resistance at the boundaries, and internal dissipation of the working 
fluid. For this purpose, we will first extend the endoreversible refrigeration cycle models to 
the irreversible refrigeration cycle model, which includes three major irreversibilities often 
existing in real refrigerators, and use it to analyse the optimal performance of a class of 
refrigerators operating between the heat reservoirs at temperatures Th and T,. 

2. A new cycle model 

For real refrigerators, besides the irreversibility of finite-rate heat transfer, there are also 
other sources of irreversibility, such as the heat leak between the heat reservoirs and 
the internal dissipation of the working fluid. In order to expound the influence of these 
irreversibilities on the performance of refrigerators, we consider a refrigeration system 
shown schematically in figure 1, where Ql and Qz are, respectively, the heats released 
to the hot reservoir at constant temperature Th and absorbed from the cold reservoir at 
constant temperature T, by the working fluid per cycle, QL is the heat leaking from the hot 
reservoir to the cold reservoir per cycle, TI and Tz are. respectively, the temperatures of the 
working fluid in  two isothermal processes, and W is the work input of the refrigerator per 
cycle. 

cycle 

Figure 1. Schematic diagram of a refrigeration system. 

The refrigerator operates in a cyclic fashion with fixed time f allotted for each cycle. 
The cycle of the working fluid is composed of two isothermal and two adiabatic processes. 
After time f has elasped, the working fluid returns to its initial state. When heat transfer 
obeys a linear law [5,7,21,251, QI, Qz, and QL may, respectively, be expressed as 

where f l  and 12 are, respectively, the times of two isothermal processes at temperatures TI 
and Tz, kl and kz are, respectively, the thermal conductances between the working fluid 
and two heat reservoirs at temperatures Th and T,, and k~ is the coefficient of the heat leak 



New performance bounds of a class of irreversible refrigerators 6391 

between the two heat reservoirs. According to figure 1, the net heats Qh and Qc transferred 
to the hot reservoir and from the cold reservoir per cycle are 

Qh = Q I  - Q L  = ki(Ti - T d t ]  - kdTh - T,)? (5) 

and 

Qc = Q2 - Q L  = - T z h  - kL(Th - T J t  (6) 

respectively. 
To obtain the simple expressions of the performance coefficient and cooling rate, two 

adiabatic processes are often assumed to proceed in negligible time [21,22,26-281, such 
that the cycle time may be approximately given by 

t = 11 + t 2 .  (7) 

Owing to the internal dissipation of the working fluid, all processes are irreversible. 
The entropy of the working fluid in two adiabatic processes increases. The T S  diagram 
of the cycle differs from that of an endoreversible Carnot refrigeration cycle, as shown in 
figure 2, where AS1 and AS2 are, respectively, the entropy differences of the working fluid 
in two isothermal processes at temperatures and T2, and they are defined as positive. 
According to the second law of thermodynamics, one has 

_ _ _  Q2 >o.  
TI  T2 

In order to obtain the quantitative relationship amongst the parameters Ql,  Q2, T I ,  and 
T2, we introduce a new parameter 

I = ASi/ASz (9) 

such that the inequality in equation (8) can be written as 

Q I  Q2 _ -  I-==. 
TI T2 

It is seen clearly from equations (9),(10), and figure 2 that when I = 1, two adiabatic 
processes are reversible and the refrigeration cycle is endoreversible; when Z > 1, two 

S 
Figure 2. The TS diagram of an irreversible refrigeration cycle. 
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adiabatic processes are irreversible and the refrigeration cycle is internally irreversible. 
Thus, the parameter I is a measure of irreversibility in the two adiabatic processes. From 
equations (2)-(7), (10) and the definitions of the performance coefficient and cooling rate, 
we find that the expressions of the performance coefficient E and cooling rate R are given 
by 

and 

respectivf ,where X = T,/Tz.  Starting from equations (11) and (12), :can determine a 
new upperbound for the performance coefficient of a class of irreversible refrigerators and 
obtain the performance coefficient versus cooling rate characteristics of such refrigerators, 

3. The maximum performance coefficient and the corresponding cooling rate 

We now optimize the performance coefficient E for two cases of kL = 0 and kL > 0. 
(i) When kL = 0, i.e. the heat leak between the heat reservoirs is negligible, E = 

l/(IX - 1) and ds/dX 0. This implies the fact that E is a monotonically decreasing 
function of X so that the maximum performance coefficient occurs at the boundary of the 
accepted X-range. When X = Th/T,, the maximum performance coefficient 

6max.1 = Tc/(ITh - Tc),  (13) 

Like cC, E,,,&, is also of limited practical value since it still corresponds to zero cooling 
rate. This shows that even though the influence of both finite-rate heat transfer and internal 
irreversibility on the performance of refrigerators is considered, one can not obtain a new 
practical significant upper bound for the performance coefficient of refrigerators. At the 
same time, equation (13) also shows the fact that the performance coefficient of all real 
refrigerators is always smaller than E-.,  so long as there is the internal irreversibility of 
the working fluid. 

(ii) When kL z 0, E is not a monotonic function of X. This implies the fact that the 
maximum performance coefficient occurs somewhere i n  the accepted X-range. Using (1 1) 
and the extrema1 conditions: 

we find that when E attains its maximum, Tz and X have to satisfy the following equations: 

CT, + Th/X 
1 +c Tz = 

Th 1 + bJd + (1 - d ) / b  X = -  
T, 1 - b  
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where C = ( 2 k ~ / k 1 ) ’ / ’ .  b = kL(% - T,)(1 + C)’/(kzTJ and d = Tc/(ITh). Substituting 
(15) and (16) into ( I  I). we find the maximum performance coefficient 

of a class of refrigerators operating between the heat reservoirs at temperatures Th and Tc 
and having three irreversibilities mentioned above. The corresponding cooling rate 

can be derived from (12),(15), and (16). is an important performance parameter of 
refrigerators, because it  determines a new significant upper bound for the performance 
coefficient of refrigerators. Using (17), we can easily generate the curves of the maximum 
performance coefficient varying with k L / k z ,  as shown in figure 3. It is seen clearly 
from figure 3 that the maximum performance coefficient of refrigerators is sensitive to 
the parameter k L  as well as the parameter I. 

w 
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Figure 3. The curves of the maximum performance 
coefficient varying with k ~ j k z .  Plots are presented 
for ThlT. = 1.2 and k l j k z  = 1. Curves (a) and 
(b) correspond to the cases of I = 1 and I = 1.1. 
respectively. 

Figure 4. The C U N ~ S  of the performance coefficient 6 

vaqhg with R/(k2TC). The values of Th/Tc and kl fk2  
are the same as in figure 3. Curves (a), (b). (e) and (d) 
correspond to the cases of I = 1 and k~ = 0. I = 1.1 
and kL = 0. I = 1 and k ~ j k z  = 0.1, and I = 1.1 and 
kLjk2 = 0.1. respectively. 

4. The E-R characteristics 

From (11),(12), and (15), we obtain 
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where k = k z / (  I + C)*. Equation (19) determines the relationship between the performance 
coefficient and the cooling rate of a class of irreversible refrigerators operating between the 
heat reservoirs at temperatures Tb and T,. Using the relationship, we can easily generate the 
curves of the performance coefficient varying with the cooling rate of refrigerators, as shown 
in figure 4. Curves (c)  and ( d )  in figure 4 correspond to the case of k L / k z  = 0.1. ?he 
two curves indicate that when the heat leak between the heat reservoirs is considered, there 
exists a maximum performance coefficient with non-zero cooling rate. The expressions of 
the maximum performance coefficient and the corresponding cooling rate may be derived 
from (19). The results are the same as (17) and (IS), respectively. Curves (c) and ( d )  also 
indicate that when E c E-, there are two different R for a given E ,  where one is smaller 
than R, and the other is larger than R,. When R c R,, the performance coefficient E 
decreases as the cooling rate R decreases, such that the working states of R c R, are not 
the optimal operating states of refrigerators, that is to say, the rational region of the cooling 
rate of refrigerators should be 

R)R,. 

This implies that R, is also an important performance parameter of refrigerators. It 
determines a lower bound for the cooling rate of refrigerators. 

5. Optimal analysis of other performance parameters 

(i) When the refrigerator operates in the state of maximum performance coefficient, the 
temperatures of the working fluid in two isothermal processes 

and 

1 - b  t C t b C J d + ( l  - d ) / b  
(1  + C)[1+ bJd + (1 - d ) / b  T2m = Tc 

can be derived from (15) and (16). According to (20). we can determine that rational regions 
of the temperatures of the working fluid in two isothermal processes should be 

TI > E m  (23) 

TZ < f i n .  (24) 

and 

Equations (23) and (24) determine new bounds for the temperatures of the working fluid in 
two isothermal processes. 

(ii) Using (10) and (15). we can prove that the optimal ratio of the times spent on two 
isothermal processes is given by 
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Equation (25) shows that the optimal ratio of the times spent on two isothermal processes 
is not affected by the heat leak, but it depends on the parameters k z / k t  and 1.  

(iii) When the refrigerator operates in the state of the maximum performance coefficient, 
the power input that it requires 

can be calculated from (17) and (18). Equation (26) determines a lower bound for the 
power input of refrigerators, because the refrigerator does not operate in the rational region 
of R > R, when P c P,. 

6. Conclusions 

The important feature of the irreversible refrigeration cycle model adopted in this paper is 
that it can include three major irreversibilities often existing in real refiigerators and it is still 
a simpler model which has analytic solutions. The maximum performance coefficient with 
non-zero cooling rate and other new performance bounds related to important performance 
parameters of refrigerators are determined. These results are general and useful. They can 
serve as an excellent guide to the evaluation of existing refrigerators and the optimal design 
of future refrigerators. 
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